Mars is not quite dead yet

Newswand: Contrary to the general perception that Mars is geologically dead planet, new observations suggest that volcanism still plays an active role in shaping the Mars surface.

Photo credit: ESA/DLR/FU Berlin

Until now, Mars has been generally considered a geologically dead planet. An international team of researchers led by ETH Zurich now reports that seismic signals indicate vulcanism still plays an active role in shaping the Martian surface.

Since 2018, when the NASA InSight Mission deployed the SEIS seismometer on the surface of Mars, seismologists and geophysicists at ETH Zurich have been listening to the seismic pings of more than 1,300 marsquakes.

Again and again, the researchers registered smaller and larger Mars quakes. A detailed analysis of the quakes’ location and spectral character brought a surprise. With epicentres originating in the vicinity of the Cerberus Fossae – a region consisting of a series of rifts or graben – these quakes tell a new story. A story that suggests vulcanism still plays an active role in shaping the Martian surface.

Mars shows signs of geological life

An international team of researchers, led by ETH Zurich, analysed a cluster of more than 20 recent marsquakes that originated in the Cerberus Fossae graben system. From the seismic data, scientists concluded that the low-frequency quakes indicate a potentially warm source that could be explained by present day molten lava, i.e., magma at that depth, and volcanic activity on Mars. Specifically, they found that the quakes are located mostly in the innermost part of Cerberus Fossae.

When they scanned observational orbital images of the same area, they noticed that the epicentres were located very close to a structure that has previously been described as a “young volcanic fissure.” Darker deposits of dust around this fissure are present not only in the dominant direction of the wind, but in all directions surrounding the Cerberus Fossae Mantling Unit. “The darker shade of the dust signifies geological evidence of more recent volcanic activity – perhaps within the past 50,000 years – relatively young, in geological terms,” explains Simon Stähler, the lead author of the paper, which has now been published in the journal Nature. Stähler is a Senior Scientist working in the Seismology and Geodynamics group led by Professor Domenico Giardini at the Institute of Geophysics, ETH Zurich.

Why study the terrestrial neighbour?

Exploring Earth’s planetary neighbours is no easy task. Mars is the only planet, other than Earth, in which scientists have ground-based rovers, landers, and now even drones that transmit data. All other planetary exploration, so far, has relied on orbital imagery. “InSight’s SEIS is the most sensitive seismometer ever installed on another planet,” says Domenico Giardini. “It affords geophysicists and seismologists an opportunity to work with current data showing what is happening on Mars today – both at the surface and in its interior.” The seismic data, along with orbital images, ensures a greater degree of confidence for scientific inferences.

One of our nearest terrestrial neighbours, Mars is important for understanding similar geological processes on Earth. The red planet is the only one we know of, so far, that has a core composition of iron, nickel, and sulphur that might have once supported a magnetic field. Topographical evidence also indicates that Mars once held vast expanses of water and possibly a denser atmosphere. Even today, scientists have learned that frozen water, although possibly mostly dry ice, still exists on its polar caps. “While there is much more to learn, the evidence of potential magma on Mars is intriguing,” Anna Mittelholz, Postdoctoral Fellow at ETH Zurich and Harvard University.

Last remnants of geophysical life

Looking at images of the vast dry, dusty Martian landscape it is difficult to imagine that about 3.6 billion years ago Mars was very much alive, at least in a geophysical sense. It spewed volcanic debris for a long enough time to give rise to Tharsis Montes region, the largest volcanic system in our solar system and the Olympus Mons – a volcano nearly three times the elevation of Mount Everest.

The quakes coming from the nearby Cerberus Fossae – named for a creature from Greek mythology known as the “hell-hound of Hades” that guards the underworld – suggest that Mars is not quite dead yet. Here the weight of the volcanic region is sinking and forming parallel graben (or rifts) that pull the crust of Mars apart, much like the cracks that appear on the top of a cake while its baking. According to, Stähler it is possible that what we are seeing are the last remnants of this once active volcanic region or that the magma is right now moving eastward to the next location of eruption.

Ends…

Meteoroid impact causes Marsquake

Newswand: Astronomers have determined that impact of a meteoroid has caused quake on Mars on December 24, 2021.

Photo credit: NASA/JPL-Caltech/University of Arizona

NASA’s InSight lander recorded a magnitude 4 marsquake last Dec. 24, but scientists learned only later the cause of that quake: a meteoroid strike estimated to be one of the biggest seen on Mars since NASA began exploring the cosmos. What’s more, the meteoroid excavated boulder-size chunks of ice buried closer to the Martian equator than ever found before – a discovery with implications for NASA’s future plans to send astronauts to the Red Planet.

Scientists determined the quake resulted from a meteoroid impact when they looked at before-and-after images from NASA’s Mars Reconnaissance Orbiter (MRO) and spotted a new, yawning crater. Offering a rare opportunity to see how a large impact shook the ground on Mars, the event and its effects are detailed in two papers published Thursday, Oct. 27, in the journal Science.

The meteoroid is estimated to have spanned 16 to 39 feet (5 to 12 meters) – small enough that it would have burned up in Earth’s atmosphere, but not in Mars’ thin atmosphere, which is just 1% as dense as our planet’s. The impact, in a region called Amazonis Planitia, blasted a crater roughly 492 feet (150 meters) across and 70 feet (21 meters) deep. Some of the ejecta thrown by the impact flew as far as 23 miles (37 kilometers) away.

With images and seismic data documenting the event, this is believed to be one of the largest craters ever witnessed forming any place in the solar system. Many larger craters exist on the Red Planet, but they are significantly older and predate any Mars mission.

“It’s unprecedented to find a fresh impact of this size,” said Ingrid Daubar of Brown University, who leads InSight’s Impact Science Working Group. “It’s an exciting moment in geologic history, and we got to witness it.”

InSight has seen its power drastically decline in recent months due to dust settling on its solar panels. The spacecraft now is expected to shut down within the next six weeks, bringing the mission’s science to an end.

InSight is studying the planet’s crust, mantle, and core. Seismic waves are key to the mission and have revealed the size, depth, and composition of Mars’ inner layers. Since landing in November 2018, InSight has detected 1,318 marsquakes, including several caused by smaller meteoroid impacts.

But the quake resulting from last December’s impact was the first observed to have surface waves – a kind of seismic wave that ripples along the top of a planet’s crust. The second of the two Science papers related to the big impact describes how scientists use these waves to study the structure of Mars’ crust.

Crater Hunters

In late 2021, InSight scientists reported to the rest of the team they had detected a major marsquake on Dec. 24. The crater was first spotted on Feb. 11, 2022, by scientists working at Malin Space Science Systems (MSSS), which built and operates two cameras aboard MRO. The Context Camera (CTX) provides black-and-white, medium-resolution images, while the Mars Color Imager (MARCI) produces daily maps of the entire planet, allowing scientists to track large-scale weather changes like the recent regional dust storm that further diminished InSight’s solar power.

The impact’s blast zone was visible in MARCI data that allowed the team to pin down a 24-hour period within which the impact occurred. These observations correlated with the seismic epicenter, conclusively demonstrating that a meteoroid impact caused the large Dec. 24 marsquake.

“The image of the impact was unlike any I had seen before, with the massive crater, the exposed ice, and the dramatic blast zone preserved in the Martian dust,” said Liliya Posiolova, who leads the Orbital Science and Operations Group at MSSS. “I couldn’t help but imagine what it must have been like to witness the impact, the atmospheric blast, and debris ejected miles downrange.”

Establishing the rate at which craters appear on Mars is critical for refining the planet’s geologic timeline. On older surfaces, such as those of Mars and our Moon, there are more craters than on Earth; on our planet, the processes of erosion and plate tectonics erase older features from the surface.

New craters also expose materials below the surface. In this case, large chunks of ice scattered by the impact were viewed by MRO’s High-Resolution Imaging Science Experiment (HiRISE) color camera.

Subsurface ice will be a vital resource for astronauts, who could use it for a variety of needs, including drinking water, agriculture, and rocket propellant. Buried ice has never been spotted this close to the Martian equator, which, as the warmest part of Mars, is an appealing location for astronauts.

Ends…

Fresh images of craters and cracks on Mars throw much light on its history

Newswand: Recently found craters and cracks on the Mars have thrown more light on its history. Images being taken recently by ESA’s Mars Express have provided more resources to the astronomers to understand history of Mars in depth.

Photo credit: ESA

The complex region of craters and fractures in the Terra Sirenum region highlights the varied history of Mars.  The image was taken by ESA’s Mars Express on 5 April 2022.

The image, taken by the High Resolution Stereo Camera (HRSC), is dominated by a large impact crater, which measures about 70 km wide. This crater is in the Terra Sirenum region of Mars, which lies in the southern hemisphere. Another area of the same region was imaged by Mars Express in 2017.

The imprint of martian wind is detectable within the crater – in the lower, eastern part of the crater, rough features known as yardangs are visible signatures of wind erosion.  The contrasting dark-toned sand within the crater may have been transported into the flat base by wind.

Clues left by water

Nestled within the large crater is a smaller crater measuring about 20 km wide. The structure and outline of the crater, and its smaller neighbour suggest that water or ice may have covered this surface when the impact occurred.

Signatures of past glaciers are visible in the smooth surface of the two neighbouring craters. The glaciers are thought to be made from a mixture of debris and ice, which flow downhill. The sedimented debris leaves clues about the direction and movement of the ice through the small sweeping channels in the base of the craters.

Water also leaves its mark in other parts of the scene. The winding valley measures up to 1.8 km in width. It is thought to have been a pathway for water which melted in the basin to the east.

Parts of the image showcases a complex region of twisting valleys, known as dendritic valleys, whose origins are believed to be due to rain or snow early in martian history.

The surface of the Red Planet is marked by the dynamic movements of the martian crust. Parallel to the large valley at lower left in the main colour image, and about 10 km away, lies a fracture which cuts through the basin.

When the crust is pulled apart by tectonic stress, parts of the surface drop downward creating the faults. These ‘graben’ can also be found in a region called Icaria Fossae.

Lava also makes its mark on the surface in two sections of the image of the region. While the larger crater has glacial signatures, the impact crater shows signs of a layer of lava on the crater floor.

Small slivers, called wrinkle ridges, are marked in the image. These are formed when a soft lava sheet is compressed by tectonic forces, causing a ridge where the material buckles over the lava sheet.

The array of features visible in one image shines a light on the varied physical processes and history of the Red Planet.

Ends…

Heaviest element yet detected in an exoplanet atmosphere

Newswand: Using the European Southern Observatory’s Very Large Telescope (ESO’s VLT), astronomers have discovered the heaviest element ever found in an exoplanet atmosphere — barium.

They were surprised to discover barium at high altitudes in the atmospheres of the ultra-hot gas giants WASP-76 b and WASP-121 b — two exoplanets, planets which orbit stars outside our Solar System. This unexpected discovery raises questions about what these exotic atmospheres may be like.

“The puzzling and counterintuitive part is: why is there such a heavy element in the upper layers of the atmosphere of these planets?” says Tomás Azevedo Silva, a PhD student at the University of Porto and the Instituto de Astrofísica e Ciências do Espaço (IA) in Portugal who led the study published today in Astronomy & Astrophysics.

WASP-76 b and WASP-121 b are no ordinary exoplanets. Both are known as ultra-hot Jupiters as they are comparable in size to Jupiter whilst having extremely high surface temperatures soaring above 1000°C. This is due to their close proximity to their host stars, which also means an orbit around each star takes only one to two days. This gives these planets rather exotic features; in WASP-76 b, for example, astronomers suspect it rains iron.

But even so, the scientists were surprised to find barium, which is 2.5 times heavier than iron, in the upper atmospheres of WASP-76 b and WASP-121 b. “Given the high gravity of the planets, we would expect heavy elements like barium to quickly fall into the lower layers of the atmosphere,” explains co-author Olivier Demangeon, a researcher also from the University of Porto and IA.

“This was in a way an ‘accidental’ discovery,” says Azevedo Silva. “We were not expecting or looking for barium in particular and had to cross-check that this was actually coming from the planet since it had never been seen in any exoplanet before.”

The fact that barium was detected in the atmospheres of both of these ultra-hot Jupiters suggests that this category of planets might be even stranger than previously thought. Although we do occasionally see barium in our own skies, as the brilliant green colour in fireworks, the question for scientists is what natural process could cause this heavy element to be at such high altitudes in these exoplanets. “At the moment, we are not sure what the mechanisms are,” explains Demangeon.

In the study of exoplanet atmospheres ultra-hot Jupiters are extremely useful. As Demangeon explains: “Being gaseous and hot, their atmospheres are very extended and are thus easier to observe and study than those of smaller or cooler planets”.

Determining the composition of an exoplanet’s atmosphere requires very specialised equipment. The team used the ESPRESSO instrument on ESO’s VLT in Chile to analyse starlight that had been filtered through the atmospheres of WASP-76 b and WASP-121 b. This made it possible to clearly detect several elements in them, including barium.

These new results show that we have only scratched the surface of the mysteries of exoplanets. With future instruments such as the high-resolution ArmazoNes high Dispersion Echelle Spectrograph (ANDES), which will operate on ESO’s upcoming Extremely Large Telescope (ELT), astronomers will be able to study the atmospheres of exoplanets large and small, including those of rocky planets similar to Earth, in much greater depth and to gather more clues as to the nature of these strange worlds.

Ends…

30,000 near Earth asteroids have been detected so far

Newswand: The astronomers have so far detected about 30,039 near-Earth asteroids in the Solar System – rocky bodies orbiting the Sun on a path that brings them close to Earth’s orbit and the counting continues. The majority of these were discovered in the last decade, showing how our ability to detect potentially risky asteroids is rapidly improving.

Photo credit: ESA

An asteroid is called a near-Earth asteroid (NEA) when its trajectory brings it within 1.3 Astronomical Units (au) of the Sun. 1 au is the distance between the Sun and Earth, and so NEAs can come within at least 0.3 au, 45 million km, of our planet’s orbit.

Currently, near-Earth asteroids make up about a third of the roughly one million asteroids discovered so far in the Solar System. Most of them reside in the asteroid belt between Jupiter and Mars.

Asteroids have been catalogued by astronomers for more than two centuries since the very first asteroid, Ceres, was discovered in 1801 by Giuseppe Piazzi. The first near-Earth asteroid, (433) Eros, was discovered nearly one hundred years later, on 13 August 1898.

The roughly 30 km Eros asteroid was discovered by Carl Gustav Witt and Felix Linke at the Urania Observatory in Berlin and independently by Auguste Charlois at the Nice Observatory. The stony asteroid’s orbit brings it to within around 22 million km of Earth – 57 times the distance of the Moon.

Not only is Eros the first known NEA, but the first asteroid to be orbited by a spacecraft and the first to have a spacecraft land on it. Early calculations of the space rock’s orbit also enabled a precise determination of the then imperfectly known distance between the Sun and Earth.

How to unearth a near-Earth asteroid

Naturally, large asteroids were discovered first as they are so much easier to see. They were thought of as minor planets, a term still used today. As telescopes get more sensitive, we are finding many more and at a great rate, even those down to tens of metres in size.

Ground-based survey telescopes such as the Catalina Sky Survey in Arizona, in the United States, discover new asteroids every week. They are designed to scan large sections of the sky, looking for new objects moving in front of the backdrop of ‘motionless’ stars.

More focused, large telescopes, such as the European Southern Observatory’s Very Large Telescope (VLT), can then be used for follow-up observations, helping us better understand a ‘new’ asteroid’s path, size and even composition.

Gaia, ESA’s space observatory on a mission to catalogue one billion stars in the galaxy, has also helped us better understand the asteroid risk.

“Because of Gaia, we know more about the stars in the galaxy which act as a backdrop to asteroid observations,” explains Tineke Roegiers, community support for the Gaia mission.

“Asteroid’s positions are obtained against these background stars, so, the better one knows where the stars are, the more precisely the orbits of asteroids can be computed.”

With the use of ‘Gaia’s stars’, even the orbits of already-known near-Earth asteroids have been improved and some asteroids that were “lost” were also found again.

ESA’s asteroid risk list

“Of course, any asteroid discovered near Earth qualifies as a near-Earth asteroid, but many are found far from home,” explains Marco Micheli, Astronomer at ESA’s Near-Earth Object Coordination Centre.

“New objects are observed over time, their movements are studied and with just a handful of data points from different nights their future positions can be predicted. Depending on the number and quality of observations, this can extend decades, even hundreds of years into the future.”

ESA’s Near-Earth Object Coordination Centre (NEOCC) in ESRIN, Italy, is home to the Agency’s asteroid experts and risk assessors. The team activates its network of telescopes around the globe to get observations of new asteroids discovered and determine their impact risk, while also chasing up ‘old’ asteroids that haven’t yet been deemed safe.

Currently, 1 425 asteroids with a ‘non-zero’ chance of impact are under their watchful eye, organised in the NEOCC’s Asteroid Risk List which is constantly updated and freely available for anyone to see. You can even sign up to ESA’s monthly ‘Asteroid Newsletter’, and the asteroid news will come direct to you.

Will any of these asteroids strike Earth?

Currently, none of the near-Earth asteroids discovered so far are a concern, for at least one hundred years. Some of the smaller objects will and do impact Earth – but the most common are also the smallest and have little effect, except for creating trails of shooting stars as they burn up in the night sky.

When it comes to large and potentially devastating asteroids larger than 1 km across and above, the majority have been discovered and none show an impact risk for at least a century. For those that could impact later, we have plenty of time to study them and prepare a deflection mission.

The current priority are the medium-sized asteroids a few hundred metres in diameter. Many are still out there, waiting to be discovered, and at smallish sizes they’re not quite as easy to find.

“The good news is that more than half of today’s known near-Earth asteroids were discovered in the last six years, showing just how much our asteroid eyesight is improving,” explains Richard Moissl, ESA’s Head of Planetary Defence.

“As this new 30 000 detection milestone shows, and as new telescopes and methods of detection are built, it’s only a matter of time until we’ve found them all.”

Ends…

DART succeeds in altering orbit of asteroid

Newswand: Analysis of data obtained over the past two weeks by NASA’s Double Asteroid Redirection Test (DART) investigation team shows the spacecraft’s kinetic impact with its target asteroid, Dimorphos, successfully altered the asteroid’s orbit. This marks humanity’s first time purposely changing the motion of a celestial object and the first full-scale demonstration of asteroid deflection technology.

Photo credit: NASA

“All of us have a responsibility to protect our home planet. After all, it’s the only one we have,” said NASA Administrator Bill Nelson. “This mission shows that NASA is trying to be ready for whatever the universe throws at us. NASA has proven we are serious as a defender of the planet. This is a watershed moment for planetary defense and all of humanity, demonstrating commitment from NASA’s exceptional team and partners from around the world.”

Prior to DART’s impact, it took Dimorphos 11 hours and 55 minutes to orbit its larger parent asteroid, Didymos. Since DART’s intentional collision with Dimorphos on Sept. 26, astronomers have been using telescopes on Earth to measure how much that time has changed. Now, the investigation team has confirmed the spacecraft’s impact altered Dimorphos’ orbit around Didymos by 32 minutes, shortening the 11 hour and 55-minute orbit to 11 hours and 23 minutes. This measurement has a margin of uncertainty of approximately plus or minus 2 minutes.

Before its encounter, NASA had defined a minimum successful orbit period change of Dimorphos as change of 73 seconds or more. This early data show DART surpassed this minimum benchmark by more than 25 times. 

“This result is one important step toward understanding the full effect of DART’s impact with its target asteroid” said Lori Glaze, director of NASA’s Planetary Science Division at NASA Headquarters in Washington. “As new data come in each day, astronomers will be able to better assess whether, and how, a mission like DART could be used in the future to help protect Earth from a collision with an asteroid if we ever discover one headed our way.”

The investigation team is still acquiring data with ground-based observatories around the world – as well as with radar facilities at NASA Jet Propulsion Laboratory’s Goldstone planetary radar in California and the National Science Foundation’s Green Bank Observatory in West Virginia. They are updating the period measurement with frequent observations to improve its precision.

Focus now is shifting toward measuring the efficiency of momentum transfer from DART’s roughly 14,000-mile (22,530-kilometer) per hour collision with its target. This includes further analysis of the “ejecta” – the many tons of asteroidal rock displaced and launched into space by the impact. The recoil from this blast of debris substantially enhanced DART’s push against Dimorphos – a little like a jet of air streaming out of a balloon sends the balloon in the opposite direction.

To successfully understand the effect of the recoil from the ejecta, more information on of the asteroid’s physical properties, such as the characteristics of its surface, and how strong or weak it is, is needed. These issues are still being investigated.

“DART has given us some fascinating data about both asteroid properties and the effectiveness of a kinetic impactor as a planetary defense technology,” said Nancy Chabot, the DART coordination lead from the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland. “The DART team is continuing to work on this rich dataset to fully understand this first planetary defense test of asteroid deflection.”

For this analysis, astronomers will continue to study imagery of Dimorphos from DART’s terminal approach and from the Light Italian CubeSat for Imaging of Asteroids (LICIACube), provided by the Italian Space Agency, to approximate the asteroid’s mass and shape. Roughly four years from now, the European Space Agency’s Hera project is also planned to conduct detailed surveys of both Dimorphos and Didymos, with a particular focus on the crater left by DART’s collision and a precise measurement of Dimorphos’ mass.

Johns Hopkins APL built and operated the DART spacecraft and manages the DART mission for NASA’s Planetary Defense Coordination Office as a project of the agency’s Planetary Missions Program Office. Telescopic facilities contributing to the observations used by the DART team to determine this result include: Goldstone, Green Bank Observatory, Swope Telescope at the Las Campanas Observatory in Chile, the Danish Telescope at the La Silla Observatory in Chile, and the Las Cumbres Observatory global telescope network facilities in Chile and in South Africa.

Neither Dimorphos nor Didymos poses any hazard to Earth before or after DART’s controlled collision with Dimorphos.

Ends…

Stars that circle each other every 51 minutes have been found

Newswand: Astronomers have found a “cataclysmic” pair of stars with the shortest orbit yet as they circle each other every 51 minutes, confirming a decades-old prediction.

Photo credit: M.Weiss/Center for Astrophysics | Harvard & Smithsonian

Nearly half the stars in our galaxy are solitary like the Sun. The other half comprises stars that circle other stars, in pairs and multiples, with orbits so tight that some stellar systems could fit between Earth and the Moon.

Astronomers at MIT and elsewhere have now discovered a stellar binary, or pair of stars, with an extremely short orbit, appearing to circle each other every 51 minutes. The system seems to be one of a rare class of binaries known as a “cataclysmic variable,” in which a star similar to our Sun orbits tightly around a white dwarf — a hot, dense core of a burned-out star. 

A cataclysmic variable occurs when the two stars draw close, over billions of years, causing the white dwarf to start accreting, or eating material away from its partner star. This process can give off enormous, variable flashes of light that, centuries ago, astronomers assumed to be a result of some unknown cataclysm.

The newly discovered system, which the team has tagged ZTF J1813+4251, is a cataclysmic variable with the shortest orbit detected to date. Unlike other such systems observed in the past, the astronomers caught this cataclysmic variable as the stars eclipsed each other multiple times, allowing the team to precisely measure properties of each star.

With these measurements, the researchers ran simulations of what the system is likely doing today and how it should evolve over the next hundreds of millions of years. They conclude that the stars are currently in transition, and that the Sun-like star has been circling and “donating” much of its hydrogen atmosphere to the voracious white dwarf. The Sun-like star will eventually be stripped down to a mostly dense, Helium-rich core. In another 70 million years, the stars will migrate even closer together, with an ultra short orbit reaching just 18 minutes, before they begin to expand and drift apart.

Decades ago, researchers at MIT and elsewhere predicted that such cataclysmic variables should transition to ultra short orbits. This is the first time such a transitioning system has been observed directly.

“This is a rare case where we caught one of these systems in the act of switching from Hydrogen to Helium accretion,” says Kevin Burdge, a Pappalardo Fellow in MIT’s Department of Physics. “People predicted these objects should transition to ultra short orbits, and it was debated for a long time whether they could get short enough to emit detectable gravitational waves. This discovery puts that to rest.”

Burdge and colleagues report their discovery in Nature. The study’s co-authors include collaborators from multiple institutions, including the Harvard and Smithsonian Center for Astrophysics.

Sky search

The astronomers discovered the new system within a vast catalog of stars, observed by the Zwicky Transient Facility (ZTF), a survey that uses a camera attached to a telescope at the Palomar Observatory in California to take high-resolution pictures of wide swaths of the sky.

The survey has taken more than 1,000 images of each of the more than 1 billion stars in the sky, recording each star’s changing brightness over days, months, and years.

Burdge combed through the catalog, looking for signals of systems with ultra short orbits, the dynamics of which can be so extreme that they should give off dramatic bursts of light and emit gravitational waves.

 “Gravitational waves are allowing us to study the universe in a totally new way,” says Burdge, who is searching the sky for new gravitational-wave sources.

For this new study, Burdge looked through the ZTF data for stars that appeared to flash repeatedly, with a period of less than an hour — a frequency that typically signals a system of at least two closely orbiting objects, with one crossing the other and briefly blocking its light.

He used an algorithm to weed through over 1 billion stars, each of which was recorded in more than 1,000 images. The algorithm sifted out about 1 million stars that appeared to flash every hour or so. Among these, Burdge then looked by eye for signals of particular interest. His search zeroed in on ZTF J1813+4251 — a system that resides about 3,000 light years from Earth, in the Hercules constellation.

“This thing popped up, where I saw an eclipse happening every 51 minutes, and I said, OK, this is definitely a binary,” Burdge recalls.

Ends…

After DART’s crash Dimorphos gets a long tail

Newswand: Southern Astrophysical Research (SOAR) Telescope], at NSF’s NOIRLab’s Cerro Tololo Inter-American Observatory in Chile, has captured the 10,000 kilo meters long tail of asteroid Dimorphos created by the crash of NASA’s DART space craft into it intentionally.

The SOAR Telescope in Chile, operated by NSF’s NOIRLab, imaged the more than 10,000 kilometers long trail of debris blasted from the surface of Dimorphos two days after the asteroid was impacted by NASA’s DART spacecraft.

It may be recalled here that NASA’s Double Asteroid Redirection Test (DART) spacecraft intentionally crashed into Dimorphos, the asteroid moonlet in the double-asteroid system of Didymos, on Monday 26 September 2022. This was the first planetary defense test in which an impact of a spacecraft attempted to modify the orbit of an asteroid.

Two days after DART’s impact, astronomers Teddy Kareta (Lowell Observatory) and Matthew Knight (US Naval Academy) used the 4.1-meter Southern Astrophysical Research (SOAR) Telescope, at NSF’s NOIRLab’s Cerro Tololo Inter-American Observatory in Chile, to capture the vast plume of dust and debris blasted from the asteroid’s surface. In this new image, the dust trail — the ejecta that has been pushed away by the Sun’s radiation pressure, not unlike the tail of a comet — can be seen stretching from the center to the right-hand edge of the field of view, which at SOAR is about 3.1 arcminutes using the Goodman High Throughput Spectrograph.

At Didymos’s distance from Earth at the time of the observation, that would equate to at least 10,000 kilometers (6000 miles) from the point of impact.

“It is amazing how clearly we were able to capture the structure and extent of the aftermath in the days following the impact,” said Kareta.

“Now begins the next phase of work for the DART team as they analyze their data and observations by our team and other observers around the world who shared in studying this exciting event,” said Knight. We plan to use SOAR to monitor the ejecta in the coming weeks and months. The combination of SOAR and AEON is just what we need for efficient follow-up of evolving events like this one.”

These observations will allow scientists to gain knowledge about the nature of the surface of Dimorphos, how much material was ejected by the collision, how fast it was ejected, and the distribution of particle sizes in the expanding dust cloud — for example, whether the impact caused the moonlet to throw off big chunks of material or mostly fine dust. Analyzing this information will help scientists protect Earth and its inhabitants by better understanding the amount and nature of the ejecta resulting from an impact, and how that might modify an asteroid’s orbit.

SOAR’s observations demonstrate the capabilities of NSF-funded AURA facilities in planetary-defense planning and initiatives. In the future, Vera C. Rubin Observatory, funded by NSF and the US Department of Energy and currently under construction in Chile, will conduct a census of the Solar System to search for potentially hazardous objects.

Didymos was discovered in 1996 with the UArizona 0.9-meter Spacewatch Telescope located at Kitt Peak National Observatory, a Program of NSF’s NOIRLab.

Ends…

Marstimer watch unveiled

Newswand: A watch which displays time of Mars has been unveiled. Swiss watch brand Omega has teamed up with ESA to launch the Marstimer: the first watch to display the time on Earth and Mars. Developed in partnership with ESA’s Mars exploration teams and tested at ESA ESTEC, this new watch is space-tough and Mars-mission ready.

Photo credit: ESA

The Marstimer watch was officially unveiled at ESA’s ESTEC facility in The Netherlands on 27 September 2022. It’s the latest addition to Omega’s Speedmaster family of watches, which have a long association with space exploration.

They were worn by NASA’s Gemini and Apollo astronauts, most famously during the Moon landing missions. They continue to be worn by astronauts today, including on the International Space Station.

The initial concept for the Marstimer came from ESA’s engineers and scientists, who wanted a watch with Mars-specific mission functions to help operate the Rosalind Franklin rover. The team got in touch with Omega and this led to a partnership to create a new watch.

The Marstimer was developed under ESA patents. It includes features from the previous ESA-Omega collaboration on the X-33 Skywalker that used ideas from ESA astronaut Jean-François Clervoy, plus multiple new ones. For example, as well as telling the time on Mars, the X-33 Marstimer can find true north on Earth and Mars without using a magnetic compass.

Space is a uniquely challenging environment. ESA builds spacecraft that can withstand extremes of temperature, the vacuum of space, the vibrations and stresses of launch, radiation and the harsh conditions of other worlds.

To ensure the Marstimer was space-ready, a suite of tests was developed with Omega and several prototype watches were successfully evaluated at ESA ESTEC. As a result, the watch bears the words ‘ESA tested and qualified’ on its caseback.

The Marstimer watch, developed with the same spirit that sent the first humans to space, builds on that heritage and looks forward to a new era of space exploration.

Note: ESA is an intergovernmental organisation and is not involved in the manufacturing or commercialisation of the Omega X-33 Marstimer.

Ends…