Spectacular image from Mars

Newswand: European Space Agency’s Roscosmos ExoMars Trace Gas Orbiter has sent a spectacular image from Mars. It looks like a sprinkle of powdered sugar on a rich red velvet cake. This shows the contrasting colours of bright white water-ice against the rusty red martian soil.

Photo credit: ESA

This delightful image was taken on 5 July 2021 and soaks in the view of a 4 km-wide crater in Mars’ north polar region of Vastitas Borealis, centred at 70.6 °N/230.3°E.

The crater is partially filled with water ice, which is also particularly predominant on its north-facing slopes that receive fewer hours of sunlight on average throughout the year.

The dark material clearly visible on the crater rim – giving it a somewhat scorched appearance – likely consists of volcanic materials such as basalt.

Most of the surrounding terrain is ice free, but has been shaped by ongoing aeolian processes. The streaks at the bottom right of the image are formed by winds that have removed the brighter iron oxide dust from the surface, exposing a slightly darker underlying substrate. 

TGO arrived at Mars in 2016 and began its full science mission in 2018. The spacecraft is not only returning spectacular images, but also providing the best ever inventory of the planet’s atmospheric gases, and mapping the planet’s surface for water-rich locations. It will also provide data relay services for the second ExoMars mission comprising the Rosalind Franklin rover and Kazachok platform, when it arrives on Mars in 2023.

Ends…

DART sends first images from space

Newswand: Two weeks after launching from Vandenberg Space Force Base in California, NASA’s Double Asteroid Redirection Test (DART) spacecraft has opened its “eye” and returned its first images from space — a major operational milestone for the spacecraft and DART team.

Photo credit: NASA

After the violent vibrations of launch and the extreme temperature shift to minus 80 degrees C in space, scientists and engineers at the mission operations center at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, held their breath in anticipation. Because components of the spacecraft’s telescopic instrument are sensitive to movements as small as 5 millionths of a meter, even a tiny shift of something in the instrument could be very serious.

On Tuesday, Dec. 7, the spacecraft popped open the circular door covering the aperture of its DRACO telescopic camera and, to everyone’s glee, streamed back the first image of its surrounding environment. Taken about 2 million miles (11 light seconds) from Earth — very close, astronomically speaking —the image shows about a dozen stars, crystal-clear and sharp against the black backdrop of space, near where the constellations Perseus, Aries and Taurus intersect.

The DART navigation team at NASA’s Jet Propulsion Laboratory in California used the stars in the image to determine precisely how DRACO was oriented, providing the first measurements of how the camera is pointed relative to the spacecraft. With those measurements in hand, the DART team could accurately move the spacecraft to point DRACO at objects of interest, such as Messier 38 (M38), also known as the Starfish Cluster, that DART captured in another image on Dec. 10. Located in the constellation Auriga, the cluster of stars lies some 4,200 light years from Earth. Intentionally capturing images with many stars like M38 helps the team to characterize optical imperfections in the images as well as calibrate how absolutely bright an object is — all important details for accurate measurements when DRACO starts imaging the spacecraft’s destination, the binary asteroid system Didymos.

DRACO (short for Didymos Reconnaissance and Asteroid Camera for Optical navigation) is a high-resolution camera inspired by the imager on NASA’s New Horizons spacecraft that returned the first close-up images of the Pluto system and of a Kuiper Belt object, Arrokoth. As DART’s only instrument, DRACO will capture images of the asteroid Didymos and its moonlet asteroid Dimorphos, as well as support the spacecraft’s autonomous guidance system to direct DART to its final kinetic impact.

DART was developed and is managed by Johns Hopkins APL for NASA’s Planetary Defense Coordination Office. DART is the world’s first planetary defense test mission, intentionally executing a kinetic impact into Dimorphos to slightly change its motion in space. While neither asteroid poses a threat to Earth, the DART mission will demonstrate that a spacecraft can autonomously navigate to a kinetic impact on a relatively small target asteroid, and that this is a viable technique to deflect a genuinely dangerous asteroid, if one is ever discovered. DART will reach its target on Sept. 26, 2022.

Ends…

Covid negative report or vaccination certificate are compulsory in Tirumala  

Newswand: The Tirumala Tirupati Devasthanam (TTD) has once again reiterated that pilgrims should bring Covid19 test negative report done 48 hours before or two doses vaccination certificate and show it to the checking team to have Darshan of the Lord or to visit Tirumala.

TTD has already been implementing this rule since October 1 onwards. But still some pilgrims are coming to Tirumala without the reports and were sent back. 

In the wake of fresh warnings by Central and State Governments in view of the fast-spreading of the Omicron virus across the country, TTD once again appealed to the devotees to come with negative report or vaccine certificates for the benefit of their own health, safety as well as that of the employees of TTD.

Negative report or vaccination certificate has been made mandatory for the devotees visiting all TTD temples also. So the devotees are requested to co-operate with TTD.

Ends…

Astronomers found about 70 rogue planets

Newswand: Astronomers have found at least 70 rogue planets which are not orbiting stars and roaming freely on their own in our galaxy.

Photo credit: ESO

Rogue planets are elusive cosmic objects that have masses comparable to those of the planets in our Solar System but do not orbit a star, instead roaming freely on their own. Not many were known until now, but a team of astronomers, using data from several European Southern Observatory (ESO) telescopes and other facilities, have just discovered at least 70 new rogue planets in our galaxy. This is the largest group of rogue planets ever discovered, an important step towards understanding the origins and features of these mysterious galactic nomads.

“We did not know how many to expect and are excited to have found so many,” says Núria Miret-Roig, an astronomer at the Laboratoire d’Astrophysique de Bordeaux, France and the University of Vienna, Austria, and the first author of the new study published in Nature Astronomy.

Rogue planets, lurking far away from any star illuminating them, would normally be impossible to image. However, Miret-Roig and her team took advantage of the fact that, in the few million years after their formation, these planets are still hot enough to glow, making them directly detectable by sensitive cameras on large telescopes. They found at least 70 new rogue planets with masses comparable to Jupiter’s in a star-forming region close to our Sun, located within the Scorpius and Ophiuchus constellations.

To spot so many rogue planets, the team used data spanning about 20 years from a number of telescopes on the ground and in space. “We measured the tiny motions, the colours and luminosities of tens of millions of sources in a large area of the sky,” explains Miret-Roig. “These measurements allowed us to securely identify the faintest objects in this region, the rogue planets.”

The team used observations from ESO’s Very Large Telescope (VLT), the Visible and Infrared Survey Telescope for Astronomy (VISTA), the VLT Survey Telescope (VST) and the MPG/ESO 2.2-metre telescope located in Chile, along with other facilities. “The vast majority of our data come from ESO observatories, which were absolutely critical for this study. Their wide field of view and unique sensitivity were keys to our success,” explains Hervé Bouy, an astronomer at the Laboratoire d’Astrophysique de Bordeaux, France, and project leader of the new research. “We used tens of thousands of wide-field images from ESO facilities, corresponding to hundreds of hours of observations, and literally tens of terabytes of data.”

The team also used data from the European Space Agency’s Gaia satellite, marking a huge success for the collaboration of ground- and space-based telescopes in the exploration and understanding of our Universe.

The study suggests there could be many more of these elusive, starless planets that we have yet to discover. “There could be several billions of these free-floating giant planets roaming freely in the Milky Way without a host star,” Bouy explains.

By studying the newly found rogue planets, astronomers may find clues to how these mysterious objects form. Some scientists believe rogue planets can form from the collapse of a gas cloud that is too small to lead to the formation of a star, or that they could have been kicked out from their parent system. But which mechanism is more likely remains unknown.

Further advances in technology will be key to unlock the mystery of these nomadic planets. The team hopes to continue to study them in greater detail with ESO’s forthcoming Extremely Large Telescope (ELT), currently under construction in the Chilean Atacama Desert and due to start observations later this decade. “These objects are extremely faint and little can be done to study them with current facilities,” says Bouy. “The ELT will be absolutely crucial to gathering more information about most of the rogue planets we have found.”

Ends…

Black holes existed since the beginning of the Universe!

Newswand: How did super massive black holes form? What is dark matter? In an alternative model for how the Universe came to be, as compared to the ‘textbook’ history of the Universe, a team of astronomers propose that both of these cosmic mysteries could be explained by so-called ‘primordial black holes’.

Photo credit: ESA

Nico Cappelluti (University of Miami), Günther Hasinger (ESA Science Director) and Priyamvada Natarajan (Yale University), suggest that black holes existed since the beginning of the Universe and that these primordial black holes could themselves be the as-of-yet unexplained dark matter. The new study is accepted for publication in The Astrophysical Journal.

“Black holes of different sizes are still a mystery. We don’t understand how super massive black holes could have grown so huge in the relatively short time available since the Universe existed,” explains Günther Hasinger.

At the other end of the scale, there might also be very small black holes, as suggested by observations from ESA’s Gaia, for example. If they exist, they are too small to have formed from dying stars.

“Our study shows that without introducing new particles or new physics, we can solve mysteries of modern cosmology from the nature of dark matter itself to the origin of super-massive black holes,” says Nico Cappelluti.

If most of the black holes formed immediately after the Big Bang, they could have started merging in the early Universe, forming more and more massive black holes over time. ESA’s future gravitational wave space observatory, LISA, might pick up the signals of those mergers if primordial black holes exist. Small black holes might simply be the primordial black holes that have not merged into larger ones yet.

According to this model, the Universe would be filled with black holes all over. Stars would start to form around these clumps of ‘dark matter’, creating solar systems and galaxies over billions of years. If the first stars indeed formed around primordial black holes, they would exist earlier in the Universe than is expected by the ‘standard’ model.

“Primordial black holes, if they do exist, could well be the seeds from which all black holes form, including the one at the centre of the Milky Way,” says Priyamvada Natarajan.

ESA’s Euclid mission, which will probe the dark Universe in greater detail than ever before, could play a role in the quest to identify primordial black holes as dark matter candidates.

The upcoming NASA/ESA/CSA James Webb Space Telescope, a cosmic time machine looking back over more than 13 billion years, will further shed light on this mystery.

“If the first stars and galaxies already formed in the so-called ‘dark ages’, Webb should be able to see evidence of them,” adds Günther.

Ends…

TTD to encourage cow based organic farming

Newswand: Tirumala Tirupati Devasthanam would encourage and support cow based organic farming.

TTD EO Dr KS Jawahar Reddy has said that TTD will support all farmers who were engaged in cow based organic farming and highlighted all TTD initiatives in the direction.

TTD has come forward to save the farmers from the financial losses involved in farming with pesticides and fertilisers.

The highlights of the pro-Go-based organic farmers were as below:

  1. TTD has begun the bulk purchase of jaggery, pulses, desi cow ghee produced on organic formats after an MOU with the organic farming department in the presence of AP CM YS Jaganmohan Reddy on October 12.
  2. TTD provided free cows, bullocks to farmers engaged in organic farming for last 2-3 years to become financially independent.
  3. Besides giving barren cows to farmers for use in organic farming TTD is offering MSP for all organic products used by TTD in making daily Prasadam at Srivari temple.
  4. Till date TTD has provided 638 desi breed bovines to farmers in both Telugu States which included 308 animals in Chittoor district (180 cows abs 128 bullocks) and distributed 330 animals in Nagar-Kurnool district.
  5. The marketing wing of the Nature Farming department collected the organic crops from farmers and later processing the crops sent it to TTD on demand.

Ends…

Cavities found at the center of a galaxy cluster  

Newswand: Scientists have found four enormous cavities, or bubbles, at the center of a galaxy cluster using NASA’s Chandra X-ray Observatory and trying to find out how they have been formed.

Photo credit: NASA

They suspect that this unusual set of features may have been caused by eruptions from two super massive black holes closely orbiting each other.

Galaxy clusters are the largest structures in the universe held together by gravity. They are a mixture of hundreds or even thousands of individual galaxies, enormous amounts of hot gas, and unseen dark matter. The hot gas that pervades clusters contains much more mass than the galaxies themselves, and glows brightly in X-ray light that Chandra detects. An enormous galaxy is usually found at the center of a cluster.

A new Chandra study of the galaxy cluster known as RBS 797, located about 3.9 billion light-years from Earth, uncovered two separate pairs of cavities extending away from the center of the cluster.

These types of cavities have been seen before in other galaxy clusters. Scientists think they are the result of eruptions from regions near a super massive black hole in the middle of the massive central galaxy. As matter flies away from the black hole as jets in opposing directions, it blows cavities in the hot gas. The revelation in RBS 797 is that there are two sets of jets directed perpendicular to each other.

“We think we know what a pair of cavities represents, but what is going on when a galaxy cluster has two pairs in very different directions?” said Francesco Ubertosi of the University of Bologna in Italy, who led the Chandra study.

Astronomers previously observed the pair of cavities in the east-west direction in RBS 797, but the pair in the north-south direction was only detected in a new, much longer Chandra observation. The deeper image uses almost five days of Chandra observing time, compared to about 14 hours for the original observation. The National Science Foundation’s Karl G Jansky Very Large Array had already observed evidence for two pairs of jets as radio emission, which line up with the cavities.

How was this quartet of cavities created? The most likely answer, according to Ubertosi and his colleagues, is that RBS 797 contains a pair of super massive black holes that have launched jets in perpendicular directions at almost the same time.

“Our best idea is that one pair of super massive black holes has led to a pair of a pair of cavities,” said Myriam Gitti, a co-author also of the University of Bologna. “While we think super massive black holes can form binary systems, it is extremely rare that both of them are observed in an active phase – in this sense the discovery of two close active black holes inflating cavities in RBS 797 is extraordinary.”

Indeed, previously a radio observation with the European VLBI Network (EVN) discovered two radio point sources separated by only about 250 light-years in RBS 797. If both sources are super massive black holes, they are among the closest pair ever detected. The two black holes should continue to spiral toward each other, generating huge amounts of gravitational waves, and eventually merge.

There is another possible explanation for the four cavities seen in RBS 797. This scenario involves only one super massive black hole – with jets that somehow manage to flip around in direction quite quickly. Analysis of the Chandra data shows that the age difference for the east-west and north-south cavities is less than 10 million years.

“If there is only one black hole responsible for these four cavities, then we will have to trace the history of its activity. Key aspects are how the jets’ orientation changed quickly, and whether this is related to the galaxy cluster environment or to the physics of the black hole itself – or even a combination of both,” said Fabrizio Brighenti, a University of Bologna co-author.

Ends…

TTD to develop Tirupati Gosala into a model one

Newswand: Tirumala Tirupati Devasthanam has decided to develop SV Gosala into a model one in the state as part of its project to establish one Gosala in each district of the state.

TTD EO Dr KS Jawahar Reddy has given instructions to the officials in this regard in a meeting December 18. He directed the officials to examine the proposals of handing over Tirupati and Palamaneru Gosalas to Pathmeda Gosala of Rajasthan or to develop them with the directions of Pathmeda Gosala so that they could be turned into model ones.

He told the officials to enter into an agreement with the Gosala at Tirumala to ensure continuation of Navaneeta Seva uninterruptedly. He asked the Go Maha Sammealanam committee members to prepare proposals including the resolutions made in the Go Maha Sammelanam for their submission to Prime Minister Narendra Modi and Union Home Minister Amit Shah.

Jawahar Reddy told the officials to take steps to prepare Prasadams of Srivaru with the agricultural products produced through organic farming. He told them to take up production of Panchagavya products in any to Gosalas of the state. He discussed the steps to increase cow based products.

Ends…

NASA’s Juno hears Jupiter’s Moon

NASA’s Juno hears Jupiter’s Moon

Newswand: NASA’s Juno space craft has heard the Jupiter’s moon and the audio clip has been released.

The audio clip has been released a briefing at American Geophysical Union Fall Meeting.

This JunoCam image shows two of Jupiter’s large rotating storms, captured on Juno’s 38th perijove pass, on Nov. 29, 2021.
Credits: NASA/JPL-Caltech/SwRI/MSSS Image processing: Kevin M. Gill CC BY

Sounds from a Ganymede flyby, magnetic fields, and remarkable comparisons between Jupiter and Earth’s oceans and atmospheres were discussed during a briefing on NASA’s Juno mission to Jupiter at the American Geophysical Union Fall Meeting in New Orleans.

Juno Principal Investigator Scott Bolton of the Southwest Research Institute in San Antonio has debuted a 50-second audio track generated from data collected during the mission’s close flyby of the Jovian moon Ganymede on June 7, 2021. Juno’s Waves instrument, which tunes into electric and magnetic radio waves produced in Jupiter’s magnetosphere, collected the data on those emissions. Their frequency was then shifted into the audio range to make the audio track. 

“This soundtrack is just wild enough to make you feel as if you were riding along as Juno sails past Ganymede for the first time in more than two decades,” said Bolton. “If you listen closely, you can hear the abrupt change to higher frequencies around the midpoint of the recording, which represents entry into a different region in Ganymede’s magnetosphere.”

Detailed analysis and modeling of the Waves data are ongoing. “It is possible the change in the frequency shortly after closest approach is due to passing from the night side to the dayside of Ganymede,” said William Kurth of the University of Iowa in Iowa City, lead co-investigator for the Waves investigation.

At the time of Juno’s closest approach to Ganymede – during the mission’s 34th trip around Jupiter – the spacecraft was within 645 miles (1,038 kilometers) of the moon’s surface and traveling at a relative velocity of 41,600 mph (67,000 kph).

Magnetic Jupiter

Jack Connerney from NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is the lead investigator with Juno’s magnetometer and is the mission’s deputy principal investigator. His team has produced the most detailed map ever obtained of Jupiter’s magnetic field.

Compiled from data collected from 32 orbits during Juno’s prime mission, the map provides new insights into the gas giant’s mysterious Great Blue Spot, a magnetic anomaly at the planet’s equator. Juno data indicates that a change in the gas giant’s magnetic field has occurred during the spacecraft’s five years in orbit, and that the Great Blue Spot is drifting eastward at a speed of about 2 inches (4 centimeters) per second relative to the rest of Jupiter’s interior, lapping the planet in about 350 years.

In contrast, the Great Red Spot – the long-lived atmospheric anticyclone just south of Jupiter’s equator – is drifting westward at a relatively rapid clip, circling the planet in about four-and-a-half years.

In addition, the new map shows that Jupiter’s zonal winds (jet streams that run east to west and west to east, giving Jupiter’s its distinctive banded appearance) are pulling the Great Blue Spot apart. This means that the zonal winds measured on the surface of the planet reach deep into the planet’s interior.

The new magnetic field map also allows Juno scientists to make comparisons with Earth’s magnetic field. The data suggests to the team that dynamo action – the mechanism by which a celestial body generates a magnetic field – in Jupiter’s interior occurs in metallic hydrogen, beneath a layer expressing “helium rain.”

Earth’s oceans, Jupiter’s atmosphere

Lia Siegelman, a physical oceanographer and postdoctoral fellow at Scripps Institution of Oceanography at the University of California, San Diego, decided to study the dynamics of Jupiter’s atmosphere after noticing that the cyclones at Jupiter’s pole appear to share similarities with ocean vortices she studied during her time as a doctoral student.

“When I saw the richness of the turbulence around the Jovian cyclones, with all the filaments and smaller eddies, it reminded me of the turbulence you see in the ocean around eddies,” said Siegelman. “These are especially evident in high-resolution satellite images of vortices in Earth’s oceans that are revealed by plankton blooms that act as tracers of the flow.”

The simplified model of Jupiter’s pole shows that geometric patterns of vortices, like those observed on Jupiter, spontaneously emerge, and survive forever. This means that the basic geometrical configuration of the planet allows these intriguing structures to form.

Although Jupiter’s energy system is on a scale much larger than Earth’s, understanding the dynamics of the Jovian atmosphere could help us understand the physical mechanisms at play on our own planet.

Ends…

Significant amount of water found on Mars

Newswand: The European Space Agency’s Roscosmos ExoMars Trace Gas Orbiter has spotted significant amounts of water at the heart of Mars’ dramatic canyon system, Valles Marineris.

The water, which is hidden beneath Mars’ surface, was found by the Trace Gas Orbiter (TGO)’s FREND instrument, which is mapping the hydrogen – a measure of water content – in the uppermost metre of Mars’ soil.

Photo credit: ESA

While water is known to exist on Mars, most is found in the planet’s cold polar regions as ice. Water ice is not found exposed at the surface near the equator, as temperatures here are not cold enough for exposed water ice to be stable.

Missions including ESA’s Mars Express have hunted for near-surface water – as ice covering dust grains in the soil, or locked up in minerals – at lower latitudes of Mars, and found small amounts. However, such studies have only explored the very surface of the planet; deeper water stores could exist, covered by dust.

“With TGO we can look down to one metre below this dusty layer and see what’s really going on below Mars’ surface – and, crucially, locate water-rich ‘oases’ that couldn’t be detected with previous instruments,” says Igor Mitrofanov of the Space Research Institute of the Russian Academy of Sciences in Moscow, Russia; lead author of the new study; and principal investigator of the FREND (Fine Resolution Epithermal Neutron Detector) neutron telescope.

“FREND revealed an area with an unusually large amount of hydrogen in the colossal Valles Marineris canyon system: assuming the hydrogen we see is bound into water molecules, as much as 40 per cent of the near-surface material in this region appears to be water.”

The water-rich area is about the size of the Netherlands and overlaps with the deep valleys of Candor Chaos, part of the canyon system considered promising in our hunt for water on Mars.

Tracking neutrons

Igor and colleagues analysed FREND observations ranging from May 2018 to February 2021, which mapped the hydrogen content of Mars’ soil by detecting neutrons rather than light.

“Neutrons are produced when highly energetic particles known as ‘galactic cosmic rays’ strike Mars; drier soils emit more neutrons than wetter ones, and so we can deduce how much water is in a soil by looking at the neutrons it emits,” adds co-author Alexey Malakhov, also of the Space Research Institute of the Russian Academy of Sciences. “FREND’s unique observing technique brings far higher spatial resolution than previous measurements of this type, enabling us to now see water features that weren’t spotted before.

“We found a central part of Valles Marineris to be packed full of water – far more water than we expected. This is very much like Earth’s permafrost regions, where water ice permanently persists under dry soil because of the constant low temperatures.”

This water could be in the form of ice, or water that is chemically bound to other minerals in the soil. However, other observations tell us that minerals seen in this part of Mars typically contain only a few percent of water, much less than is evidenced by these new observations. “Overall, we think this water more likely exists in the form of ice,” says Alexey.

Water ice usually evaporates in this region of Mars due to the temperature and pressure conditions near the equator. The same applies to chemically bound water: the right combination of temperature, pressure and hydration must be there to keep minerals from losing water. This suggests that some special, as-yet-unclear mix of conditions must be present in Valles Marineris to preserve the water – or that it is somehow being replenished.

“This finding is an amazing first step, but we need more observations to know for sure what form of water we’re dealing with,” adds study co-author Håkan Svedhem of ESA’s ESTEC in the Netherlands, and former ESA project scientist for the ExoMars Trace Gas Orbiter.

“Regardless of the outcome, the finding demonstrates the unrivalled abilities of TGO’s instruments in enabling us to ‘see’ below Mars’ surface – and reveals a large, not-too-deep, easily exploitable reservoir of water in this region of Mars.”

Future exploration

As most future missions to Mars plan to land at lower latitudes, locating such a reservoir of water here is an exciting prospect for future exploration.

While Mars Express has found hints of water deeper underground in Mars’ mid-latitudes, alongside deep pools of liquid water under Mars’ south pole, these potential stores lie up to a few kilo meters below ground, making them less exploitable and accessible to exploration than any found just below the surface.

The finding also makes Valles Marineris an even more promising target for future human exploration missions to the planet. The largest canyon in the Solar System, Valles Marineris is arguably Mars’ most dramatic landscape, and a feature that is often compared to Earth’s Grand Canyon – despite being some ten times longer and five times deeper.

Ends…